Parametrization of the Driven Betatron Oscillation
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The AC dipole is a short dipole magnet to excite transverse motion of a beam to diagnose a synchrotron.
Instead of giving a single pulse like a conventional kicker/pinger magnet, it drives the beam with its sinusoidally
time varying field. The transverse motions excited by an AC dipole (driven betatron oscillation) is slightly
different from the natural betatron oscillation. Although this difference is usually ignored because it becomes
smaller when driving frequency and betatron frequency gets closer, it has more than 6% of impact on lattice
function measurement in typical operations of an AC dipole. This paper shows such difference can be seen in
measurements using the AC dipole of the Tevatron and explained as difference of lattice functions between the
natural and driven betatron oscillation. The paper also mentions lattice function measurements based on the AC

dipole.

PACS numbers: Valid PACS appear here

I. INTRODUCTION
A. AC Dipole

Advantages of the AC dipole over a conventional kicker or
pinger magnet are, when the field strength of the dipole is adi-
abatically ramped up and ramped down, it can create large
oscillations without decoherence and emittace growth [? ].
These properties of the AC dipole makes it useful to measure
both linear and nonlinear parameters of a synchrotron, partic-
ularly a hadron synchrotron because it allows measurements
without interfering its normal operations. The AC dipole has
been used and tested in mainly BNL RHIC and also CERN
SPS [? ]. Now, it has been used in FNAL Tevatron to study
its optics and preparation is underway for LHC too [? ].

B. Two Driving Terms of the AC Dipole

As details are shown in the next section, the driven beta-
tron oscillation can be written in the same form as the natural
betatron oscillation but its lattice functions are different. The
difference arises because the driving force is localized and two
driving terms are created as a consequence. For instance, fre-
quencies of the beam revolution and AC dipole in the Tevatron
are f, ~47.7 and f; ~20.5 kHz and a tune of the AC dipole is
Vi = fa/fr = 0.43. As there are two peaks observed at v and
1 — v in Schottky monitors, where V is the fractional part of
betatron tune, the circulating beam sees not only v, but also
see V_ =1—v; =0.57 as a tune of the AC dipole (Fig 1). This
way, a local driving force like an AC dipole creates a pair of
driving terms at v+. In this paper, the driving term closer to
v is called the primary and the other is called the secondary.
In the following, it is convenient to define tune of the primary
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FIG. 1: Tune spectrum (vertical) on the frame moving with the beam.
An AC dipole creates two driving terms at V4 (dashed lines). For the
Tevatron AC dipole, v_ is closer to v and the driving tune v; = v_.
0, is distance from v, to v. In typical operations of an AC dipole,
v, is outside of the tune spread (black part).

driving term:
v hen |v; —v vV_—vV
V= + Wwhen | + | < | | (D)
v_  when [v_ —v|<|vy—V].

For the Tevatron AC dipole, vj =v_ =0.57 and 1 —v; =
vy =0.43.

84 = vy — Vv is a parameter to describe the distance between
vy and v. Ideally, in the limit of §; — 0, the effect of the
primary driving term becomes dominant and the secondary
driving term can be simply ignored but in reality, for hadron
synchrotrons such as Tevatron, RHIC, and LHC, |, is in the
order of 0.01 at minimum and it is not always small enough to
ignore the secondary driving term.

The next section shows the driven betatron oscillation can
expressed in the same form as the natural betatron oscilla-
tion even when the secondary driving term is included and



their difference can be expressed as difference of their lattice
functions. Section III shows the effects of the secondary driv-
ing term can be actually seen in measurements using the AC
dipole in the Tevatron and they can explained as the difference
of lattice functions.

II. DRIVEN BETATRON OSCILLATION
A. Notations and Coordinate System

When analyzing turn-by-turn (TBT) data of the driven be-
tatron oscillation, it is convenient to use transverse position
and angle at one location of a synchrotron § (0 < § < C) n
revolutions after the AC dipole is turned on:

X (5) = x(nC+75) ()
X, (5) =X (nC+3) , 3)

where C is the circumference of the machine and § is in-
troduced to avoid confusion with longitudinal coordinate s
(—o0 < s < ). The point of reference § = 0 is chosen to be
the location of the AC dipole. Let y(5) be the phase advance
of the natural betatron oscillation measured from the location
of the AC dipole (5§ = 0) to §:
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Obvious § dependences of parameters are sometimes ignored
in the following.

B. Magnitudes of Two Driving Terms

As discussed in the previous section, field strength of an
AC dipole is adiabatically ramped up and ramped down before
and after the measurement. When the AC dipole is on its flat
top, position of the driven betatron oscillation x4, is given by
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where 6 is the maximum kick angle of the AC dipole defined
with the maximum magnetic field B, length of the dipole ¢,
and magnetic rigidity (Bp)

Byt
i =l 6)
(Bp)
Xa is the initial phase of the AC dipole (the phase when the
beam is first kicked by the AC dipole), and (0) is f at the
location of the AC dipole. As seen in the equation, two terms

are completely symmetric and each term represents the effect
from driving terms at v. The exact expression of x4 ,(5) in-
cludes terms inversely proportional to ramp times but they are
typically less than 1% of the largest term when the AC dipole
is slowly ramped up and down.

Since J, is small (typically the order of 0.01) in usual oper-
ations of an AC dipole, one term in Eq (5) is much larger than
the other and the smaller term has been simply ignored in data
analyses. To estimate the effect of the smaller driving term,
define ratio of two terms in Eq (5):

Aa(8g) = sin(m(vy —Vv))/sin(m(v_ —v)) when vy = v,
A= sin(z(v- —v))/sin(m(vy — v)) when vy = v_
- sin(mdy) - ndy -
~ sin2av+78,) — sin(2av)

For hadron storage rings such as Tevatron, RHIC, and LHC,
0, is desired to be |J,] < 0.01. Since the tune of the Tevatron
is v~ 0.58, |A4] ~ 6.5% when |§,;| = 0.01. If v ~ 0.3 such
as RHIC (polarized proton operations) and LHC, the separa-
tion between v gets larger and |A,| becomes smaller but it is
still about 3% when |8, = 0.01. Notice these are effects on
amplitude. Since B function is proportional to square of am-
plitude, if it is measured by simply ignoring term of the sec-
ondary driving term, error in the measurement is 13% for the
Tevatron and 6% for RHIC and LHC when |§,| = 0.01. These
effects of the secondary driving term could be seen in recent
measurements using the AC dipole of the Tevatron. They are
presented in section III.

C. Lattice Functions

By using formulae of trigonometric functions, without ig-
noring the smaller term, Eq (5) can be written in a similar form
of the natural betatron oscillation:

Xg.n(5,04) = Agr/ Bacos(2mvan+ vy £ Xa) ®)

where A is a quantity with dimensions of (length)!/2:
64

Aa(8y) = Fsin(n8y)

(1-25)B(0), 9)

B is amplitude function of the driven betatron oscillation:

14+ A2 —224cos(2y —2mv)

ﬁd(S;(sd)E 1_13

B, (10

y; is the phase advance of the driven betatron oscillation mea-
sured from the location of the AC dipole:

_ [ ds
‘/’d(s»5d>='/0m’ (11)

and the sign in front of ), is positive when v; = v and neg-
ative when v; = v_. A relation between y and y; is given



by
tan(yy; — wVy) = %tam(w— V)
_ tan(7vy) B
= Tan(zv) tan(y —7v) . (12)

Parameters corresponding to o and 7y can be also defined as
the natural betatron oscillation:

1d
o (5:81) = _5%
_ 1+ 247 —2A;cos(2y —2mv) o
1-A7
2A4sin(2y —27mv)
— 13
A2 (13)
1+ a3
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1-22
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When Ay, g, 0y, and 7, are defined this way, a relation like
Courant-Snyder invariance also holds:

AJ = VaX 200X Xy, + BaXl7 - 15)

From Eqgs (10), (13), (14), and (11), lattice functions of the
driven betatron oscillation B;, oy, Y4, and Y, are functions
of not only § but also &, and their differences from S, o, 7,
and y are the factor of 24, in the leading order (except for
oy since there is an extra term). Although these differences
vanish in the limit of §; — 0 (and so A; — 0), |8y ~ 0.01 is
the practical limit and By, 0y, ¥4, and y, all differ from f, «,
7, and y about 13% in the Tevatron and 6% in LHC and RHIC
(maybe more for ot;). Also notice B, ¢y, and ¥, depend on §
through not only 3, &, and 7y but also .

III. PROPERTIES OF THE DRIVEN BETATRON
OSCILLATION

A. Phase Space Trajectory

In three locations of the Tevatron, A0, BO, and DO, there are
spaces with no magnet (except solenoids of detectors for BO
and DO) between two BPMs. Since the beam runs on a straight
line in such spaces, position and angle at any location between
two BPMs can determined without using lattice information.

From Eq (15), TBT position and angle of the driven be-
tatron oscillation also form an ellipse at a location of a syn-
chrotron. Since not only A, but also B;, ¢, and 7y, de-
pend on &, both area and shape changes with §, for a phase
space ellipse of the driven betatron oscillation. Fig 2 shows
the measured phase ellipses of the driven betatron oscilla-
tion when 6; = —0.04, —0.02, and —0.01 magnetic field of
the AC dipole is kept the same. Measurements were done
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FIG. 2: Phase space (vertical) trajectories of the driven betatron os-
cillations when &, is —0.01 (outermost), —0.02 (middle), and —0.04
(innermost) while the field strength is kept the same. The location is
DO interaction point where « is zero by design. Area gets larger and
tilt gets smaller when |&,| gets smaller.

with the same proton beam with small momentum spread of
Ap/p ~3.510~* at the injection energy 150 GeV. The loca-
tion is the DO interaction point of the Tevatron where o ~ 0
by design. In the figure, it is possible to observe tile angle gets
larger and the shape gets thinner when §,; decreases.

By fitting Eq (15) to data points of an ellipse in Fig 2,
its area nAf,, which is invariant of the longitudinal position,
and By, oy, and Y, at the location can be determined. Fig 3
shows the measured relation between o; and 6; where each
data point is determined from the fit to the ellipse. Again, the
location is the DO interaction point. The line in Fig 3 is the
fit of Eq (13) to data points with fit parameters of o and y.
Since a; describes the correlation between position and an-
gle, the fact |oyy| gets larger with |J,| corresponds to the tile
angle increasing with |8,| in Fig 2. a = a;(8; = 0) can be
determined from this fit and it is about -0.015 in this case.
Notice the difference between « and o is as large as 100%
even when 8; = —0.01. The reason of this large difference
comes from the second term of Eq (13). Although the effect
of this extra term is negligible when o > 2, it makes large
difference when o ~ 0, hence at waists of low f insertions,
because the maximum of 24, is added to a depending on the
phase advance. Since f; does not have such an extra term,
difference between B; and f is the factor of 2A,. Difference
between B; and B is discussed in the next section.

B. Amplitude Function f3;

From Egs (9) and (10), the amplitude of the driven betatron
oscillation at § is given by

Aa/Ba(5)
_ ‘Mo)ﬁ(@))\/l 122~ 22y cos(2y(s) —21v) .

~ dsin(w(vy—v

(16)



FIG. 3: Relation between of; and §; at DO interaction point. The
squares are data points and the line is the fit of Eq (13). o = 0tz(0) ~
—0.015.

Notice § dependence of the amplitude is determined by not
only 8 but also the factor [1 + A2 —24,cos(2y — 27V)]
through phase y. Since this factor has the same phase depen-
dence as f§ beat [? ], the effect of the secondary driving term
cannot be distinguished from the  beat. Ignoring the sec-
ondary driving term is the same as taking the limit of A; — 0.
Then, the amplitude becomes

Ad\/ﬁdi(s")ldﬂo 0a+/B(0)B(3)

T Gsin(x(vg—v)) | 17)

In the similar data sets as the previous section, it is possible
to see the effect of the secondary driving term described by Eq
(16). Fig 4 shows amplitudes of the driven betatron oscillation
measured at one BPM in the Tevatron. Five data points rep-
resent amplitudes when v, = 0.568, 0.563, 0.558, 0.548, and
0.538 and the same magnetic field of the AC dipole. Other
conditions are the same as the measurements in the previous
section. Since the tune was set to the nominal value 20.578
prior to the measurement, J, for each data points are roughly
—0.01, —0.015, —0.02, —0.03, and —0.04. The solid and
dashed lines are the fit of Eqs (16) and (17) to these data
sets. The fit parameters are v, 1 6,[8(0)B(5)]'/2, and y for
Eq (16) and v and ¥ 6,(8(0)B(5)]'/? for Eq (17). Although,
from comparison of two fits at one BPM, it is not clear that the
fit including the secondary driving term is better or not, it be-
comes clearer when fit parameters of all BPMs are compared.

Fig 5 shows tunes determined at each BPM location by re-
peating the same fit as Fig 4. The solid and dashed lines rep-
resent fits of Eqs (16) and (17). Since tune Vv is a constant
around the ring, variations of measured tunes over BPMs give
a sence of inaccuracy. Fig 5 clearly indicates the model in-
cluding the secondary driving gives better description to data.

For the natural betatron oscillation, square of the amplitude
at one location of a synchrotron is given with a constant of
motion A by A2B. If there is a pair of BPMs in a drifting
space of the ring, like the case of the Tevatron, AZ can be de-
termined from the phase space area. This is a typical process
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FIG. 4: Relation between the oscillation amplitude of the driven be-
tatron oscillation and v, at one BPM in the Tevatron (section B21).
The squares represent the data points and the solid and dashed lines
are fits with and without the effect of the secondary driving term in-
cluded.

to determine (uncoupled) 8 functions at BPMs from TBT data
of the natural betatron oscillation. If the precess is repeated
for TBT data of the driven betatron oscillation, from Eq (??),
what is measured is f; instead of . In general, measuring
B from TBT data of the driven betatron oscillation requires
more than one data set and actually the fits of the previous
paragraph can be used. From the fits, tune v and a parameter
1 64(B8 (0)B(5)]"/? at BPMs are given. Ay is also determined
from the phase space area. When tune and A, are known, the
constant % 6,8(0)"/2 in front of B(5)!/? is given by

. Ay sin(n?6d)
V1A

This way, B at BPMs can be determined from multiple TBT
data sets of the driven betatron oscillation.

Fig 6 is a comparison between vertical  and ; when
04 = —0.01. They are both measured from TBT data of the
driven betatron oscillation as described in the previous para-
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FIG. 5: Vertical tune measured with each BPM from the fits to ampli-
tudes. The solid and dashed lines are from fits with and without the
effect of the secondary driving term included. The tune was adjusted
to its nominal value 20.578 before the measurement.
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FIG. 6: Comparison of vertical 8 (solid) and ; when &; = —0.01
(dashed) at vertical BPMs in the Tevatron. Both of them are mea-
sured from the same data set(s). Depending on §,. B is expected to
show f beta like behavior with amplitude of 13%.

graph. Notice the average value of 3 is about 100 m and the
dashed line (f;) is showing beating of roughly +10 — 15 m
compared to the solid line (f3) as expected in Il C. The graph
indicates the difference between 8 and fB; created by the sec-
ondary driving term is still noticeable even when |5,| = 0.01.

The last fit parameter of Fig 4 is the phase advance of the

natural betatron oscillation y. Therefore, the phase can be
also determined from the fit of the amplitudes. Notice, since
phase advance is also different between the natural and driven
betatron oscillation, Eq (11) or (12), w cannot be directly mea-
sured from phase difference of driven betatron oscillation at
BPMs.

IV. CONCLUSION

When a beam is driven by an AC dipole, its motion is gov-
erned by lattice functions B, @y, V4, and yy. They satisfy the
similar relations as the lattice functions of the natural betatron
oscillation. Their differences are in the order of 24, (except o
and oyy) and created by the secondary driving term. The paper
showed such differences are observed as expected when the
beam is excited by the AC dipole in the Tevatron. It was also
discussed how to measure lattice functions of the natural be-
tatron oscillation from TBT data sets of the driven oscillation
without ignoring the difference in their lattice functions.
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